Abstract

Age-associated deterioration of physiological functions occur at heterogeneous rates across individual organs. A granular evaluation of systemic metabolic mediators of aging in a healthy human cohort (n = 225) identified prominent increases in circulating uremic toxins that were recapitulated in mice, on which we further characterized the aging phenome across five peripheral organs. Our multi-omics analyses connected systemic aging profiles primarily to kidney metabolism, uncovering a metabolic association between localized glucosylceramide (GluCer) accretion and renal functional decline. Elevated GluCers were also associated with higher risk of deaths in an independent cohort of aged individuals (n = 271). We report GluCer-mTOR signaling commencing at late middle-age that disrupts mitophagy and undermines mitochondrial respiration in kidney. Conserved between human and mice, GluCer-mediated renal dysfunction is female-biased and modulated by intracellular purines. Our work provides molecular basis for the sexually disparate effects of mTOR inhibition on mammalian lifespan, possibly ascribed to the evolutionary cost of female reproduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.