Abstract
Lipidoid nanoparticles have been demonstrated to be effective for intracellular delivery of small molecule drugs, proteins, and nucleic acids. Stimuli-responsive lipidoid nanoparticles are able to further improve delivery efficacy and reduce carrier-induced toxicity. Our group previously developed reduction and photoresponsive combinatorial libraries of lipidoid nanoparticles for small molecule and biologics delivery. Herein, we describe the synthesis, characterization, and intracellular mRNA delivery application of a new library of pH-responsive lipidoid nanoparticles. The acid-degradable cyclic benzylidene acetal-containing cationic lipidoids (R-O16CBA) were synthesized through a multistep reaction and characterized by NMR and MS. The acid-triggered degradation of lipidoids was studied using NMR, MS, DLS, and TEM. The results revealed that the R-O16CBA lipidoid can be completely degraded at pH 5. The R-O16CBA lipidoid nanoparticles were then fabricated with different formulations of DOPE and cholesterol and tested in vitro for intracellular mRNA delivery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.