Abstract

Future advances in Li-ion rechargeable battery performance are strongly linked to improved electrode materials. Candidate materials for the negative electrode of the future generally contain multiple elements and broad composition ranges. There are surprisingly few published accounts of combinatorial investigations of Li-ion rechargeable battery electrode materials. This paper describes the combinatorial infrastructure of the Dahn group at Dalhousie University as it relates to other published accounts in the search for advanced Li-ion rechargeable battery negative electrode materials. Sample data sets are provided for various material systems. Special attention is paid to start-up and operational costs to encourage other groups to adopt combinatorial methods in this and other fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.