Abstract

Boij–Söderberg theory shows that the Betti table of a graded module can be written as a linear combination of pure diagrams with integer coefficients. Using Ferrers hypergraphs and simplicial polytopes, we provide interpretations of these coefficients for ideals with a d-linear resolution, their quotient rings, and for Gorenstein rings whose resolution has essentially at most two linear strands. We also establish a structural result on the decomposition in the case of quasi-Gorenstein modules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.