Abstract

The impact of Sec signal peptides (SPs) from Bacillus subtilis in combination with isopropyl-β- d-1-thiogalactopyranoside concentration and feeding profile was investigated for heterologous protein secretion performance by Corynebacterium glutamicum using cutinase as model enzyme. Based on a comprehensive data set of about 150 bench-scale bioreactor cultivations in fed-batch mode and choosing the cutinase yield as objective, it was shown that relative secretion performance for bioprocesses remains very similar, irrespective of the applied SP enabling Sec-mediated cutinase secretion. However, to achieve the maximal absolute cutinase yield, careful adjustment of bioprocess conditions was found to be necessary. A model-based, two-step multiple regression approach resembled the collected data in a comprehensive way. The corresponding results suggest that the choice of the heterologous Sec SP and its interaction with the adjusted exponential feeding profile is highly relevant to maximize absolute cutinase yield in this study. For example, the impact of Sec SP is high at low growth rates and low at high growth rates. However, promising Sec SPs could be inferred from less complex batch cultivations. The extensive data were also evaluated in terms of cutinase productivity, highlighting the well-known trade-off between yield and productivity in bioprocess development in detail. Conclusively, only the right combination of target protein, Sec SP, and bioprocess conditions is the key to success.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.