Abstract

In this paper, the open problem posed by Sareen and Rana (Proc. Indian Acad. Sci. (Math. Sci.) 126 (2016) 549–556) is addressed. Here, we interpret two tenth order mock theta functions combinatorially in terms of lattice paths. Then we extend enumeration of one of these with Bender–Knuth matrices; the other by using Frobenius partitions. The combinatorial interpretation of one of these mock theta functions in terms of Frobenius partitions gives an answer to the open problem. Finally, we establish bijections between different classes of combinatorial objects which lead us to one 4-way and one 3-way combinatorial identity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.