Abstract

This paper stands at the interface between combinatorial Hopf algebra theory and renormalization theory. Its plan is as follows: Sec. 1.1 is the introduction, and contains an elementary invitation to the subject as well. The rest of Sec. 1 is devoted to the basics of Hopf algebra theory and examples in ascending level of complexity. Section 2 turns around the all-important Faà di Bruno Hopf algebra. Section 2.1 contains a first, direct approach to it. Section 2.2 gives applications of the Faà di Bruno algebra to quantum field theory and Lagrange reversion. Section 2.3 rederives the related Connes–Moscovici algebras. In Sec. 3, we turn to the Connes–Kreimer Hopf algebras of Feynman graphs and, more generally, to incidence bialgebras. In Sec. 3.1, we describe the first. Then in Sec. 3.2, we give a simple derivation of (the properly combinatorial part of) Zimmermann's cancellation-free method, in its original diagrammatic form. In Sec. 3.3, general incidence algebras are introduced, and the Faà di Bruno bialgebras are described as incidence bialgebras. In Sec. 3.4, deeper lore on Rota's incidence algebras allows us to reinterpret Connes–Kreimer algebras in terms of distributive lattices. Next, the general algebraic-combinatorial proof of the cancellation-free formula for antipodes is ascertained. The structure results for commutative Hopf algebras are found in Sec. 4. An outlook section very briefly reviews the coalgebraic aspects of quantization and the Rota–Baxter map in renormalization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.