Abstract

Both human embryonic stem (hES) cells and induced pluripotent stem (hiPS) cells can self-renew indefinitely in culture, however current methods to clonally grow them are inefficient and poorly-defined for genetic manipulation and therapeutic purposes. Here we develop the first chemically-defined, xeno-free, feeder-free synthetic substrates to support robust self-renewal of fully-dissociated hES and hiPS cells. Materials properties including wettability, surface topography, surface chemistry and indentation elastic modulus of all polymeric substrates were quantified using high-throughput methods to develop structure/function relationships between materials properties and biological performance. These analyses show that optimal hES cell substrates are generated from monomers with high acrylate content, have a moderate wettability, and employ integrin αvβ3 and αvβ5 engagement with adsorbed vitronectin to promote colony formation. The structure/function methodology employed herein provides a general framework for the combinatorial development of synthetic substrates for stem cell culture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.