Abstract

Owing to their strong migratory capacity, tumor tropism, and tumor inhibitory effect, neural stem cells (NSCs) have recently emerged as one of the most attractive gene delivery vectors for cancer therapy. However, further animal studies found that proportional NSC vectors were distributed to nontarget organs after intravenous injection and the nonspecific transgene expression led to significant cytotoxic effects in these organs. Hence, an expression cassette that controls the transgene expression within NSC vectors in a tumor site-specific manner is desired. Considering hypoxia as a hallmark of tumor microenvironment, we have developed a novel NSC vector platform coupling transcriptional targeting with microRNA (miRNA) regulation for tumor hypoxia targeting. This combinatorial vector employed a hypoxia-responsive promoter and repeated targeting sequences of an miRNA that is enriched in NSCs but downregulated upon hypoxia induction to control the transgene expression. This resulted in significantly improved hypoxic selectivity over the use of a control vector without miRNA regulation. Thus, incorporating miRNA regulation into a transcriptional targeting vector adds an extra layer of security to prevent off-target transgene expression and should be useful for the development of NSC vectors with high targeting specifcity for cancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.