Abstract
This paper introduces several new combinatorial constructions of low-density parity-check (LDPC) codes, in contrast to the prevalent practice of using long, random-like codes. The proposed codes are well structured, and unlike random codes can lend themselves to a very low-complexity implementation. Constructions of regular Gallager codes based on cyclic difference families, cycle-invariant difference sets, and affine 1-configurations are introduced. Several constructions of difference families used for code design are presented, as well as bounds on the minimal distance of the codes based on the concept of a generalized Pasch configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.