Abstract

Recent results of Hanlon, Stanley, and Stembridge give the expected values of certain functions of matrices of normal variables in the real and complex cases. They point out that in both cases the results are equivalent to combinatonal results and suggest further that these results may have purely combinatonal proofs, in this way avoiding the use of the theory of spherical functions. Such proofs are given in this paper. In the complex case we use the familiar cycle decomposition for permutations. In the real case we introduce an analogous decomposition into cyclically ordered sequences, called chains, which makes the real and complex cases strikingly similar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.