Abstract

A series of two articles discusses possible morphological evidence for oligomerization of growth units in the crystallization of tetragonal lysozyme, based on a rigorous graph-theoretic derivation of the F faces. In the first study (Part I), the growth layers are derived as valid networks satisfying the conditions of F slices in the context of the PBC theory using the graph-theoretic method implemented in program FFACE [C.S. Strom, Z. Krist. 172 (1985) 11]. The analysis is performed in monomeric and alternative tetrameric and octameric formulations of the unit cell, assuming tetramer formation according to the strongest bonds. F (flat) slices with thickness Rdhkl (12 < R ≤ 1) are predicted theoretically in the forms 1 1 0, 0 1 1, 1 1 1. The relevant energies are established in the broken bond model. The relation between possible oligomeric specifications of the unit cell and combinatorially feasible F slice compositions in these orientations is explored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call