Abstract

Adrenal chromaffin cells constitute one of the first cell types to have been defined as a neuroendocrine cell type. Since they produce dopamine, these cells have been proposed for the treatment of neuronal deficits in human Parkinson's disease. However, the factors involved in the development of chromaffin cells are still poorly understood. Based on recent insights from stem cell research, we decided to study the role of extracellular matrices, growth factors and neuropeptides on the neuroendocrine differentiation in a serum-free medium of PC12 cells. Employing immunohistochemistry, quantitative PCR and HPLC analysis, neuroendocrine differentiation was determined by evaluating neurite outgrowth, catecholamine biosynthesis and release as well as neuropeptide and vesicular protein mRNA expression. The combination of bFGF, NGF and PACAP could prevent the inhibition of neurite process development induced by dexamethasone in PC12 cells cultured on ECM. Whereas glucocorticoids were essential in the regulation of enzymes of catecholamine biosynthesis and metabolism, growth factors and PACAP were more efficient in inducing neuropeptide and chromogranin B expression as well as release of dopamine and 3-methoxytyramine. Therefore, in addition to glucocorticoids, chromaffin cells need a gradient of matrix, growth factors, and neuropeptides to develop the full functional phenotype of a neuroendocrine cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.