Abstract
Lepowsky and Wilson initiated the approach to combinatorial Rogers-Ramanujan type identities via vertex operator constructions of standard (i.e., integrable highest weight) representations of affine Kac-Moody Lie algebras. Meurman and Primc developed further this approach for sl(2,C) ˜ by using vertex operator algebras and Verma modules. In this paper, we use the same method to construct combinatorial bases of basic modules for affine Lie algebras of type Cn(1) and, as a consequence, we obtain a series of Rogers-Ramanujan type identities. A major new insight is a combinatorial parametrization of leading terms of defining relations for level one standard modules for affine Lie algebra of type Cn(1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.