Abstract

This paper deals with the splitting number \({\mathfrak{s}}\) and polarized partition relations. In the first section we define the notion of strong splitting families, and prove that its existence is equivalent to the failure of the polarized relation$$\left(\begin{array}{lll}\mathfrak{s} \\ \omega \end{array} \right) \rightarrow {\left(\begin{array}{ll}\mathfrak{s} \\ \omega \end{array} \right)}^{1, 1}_{2}$$. We show that the existence of a strong splitting family is consistent with ZFC, and that the strong splitting number equals the splitting number, when it exists. Consequently, we can put some restriction on the possibility that s is singular. In the second section we deal with the polarized relation under the weak diamond, and we prove that the strong polarized relation$$\left(\begin{array}{lll}2^{\omega} \\ \omega \end{array} \right) \rightarrow {\left(\begin{array}{ll}2^{\omega} \\ \omega \end{array} \right)}^{1, 1}_{2}$$is consistent with ZFC, even when cf \({(2^{\omega}) = \aleph_{1}}\) (hence the weak diamond holds).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.