Abstract

The paper studies the notion of imprimitivity index of a semigroup of nonnegative matrices, introduced by Protasov and Voynov. A new characterization of the imprimitivity index in terms of the scrambling rank of a nonnegative matrix is suggested. Based on this characterization, an independent combinatorial proof of the Protasov–Voynov theorem on the interrelation between the imprimitivity index of a semigroup of stochastic matrices and the spectral properties of matrices in the semigroup is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.