Abstract

The combinative effects of thermal annealing and additive processes on the performance of all-polymer bulk heterojunction (BHJ) solar cells with composites of different donor polymers (PTQ1, P3HT, PTB7-Th) and poly[1,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)P(NDI2OD-T2) [PolyeraActivInk N2200] were investigated. We found that devices treated with both processes show significant improved performance compared with those treated with either process alone. To reveal the mechanism of this enhancement in device performance, the optical and electrical properties of all-polymer blends were carefully investigated in the PTQ1/N2200 system. The synergetic effect of both processes can largely enhance the polymer aggregation, especially for N2200, leading to improved absorbance, improved charge mobility, and thus higher device performance. In addition, the device efficiency can be further enhanced by postannealing which can improve the interface between the active layer and Al cathode, as revealed by ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.