Abstract

In a companion paper we examined whether combinations of Kv7 channel openers (Retigabine and Diclofenac; RET, DIC) could be effective modifiers of deep tissue nociceptor activity; and whether such combinations could then be optimized for use as safe analgesics for pain-like signs that developed in a rat model of GWI (Gulf War Illness) pain. In the present report, we examined the combinations of Retigabine/Meclofenamate (RET/MEC) and Meclofenamate/Diclofenac (MEC/DIC). Voltage clamp experiments were performed on deep tissue nociceptors isolated from rat DRG (dorsal root ganglion). In voltage clamp studies, a stepped voltage protocol was applied (−55 to −40 mV; Vh=−60 mV; 1500 msec) and Kv7 evoked currents were subsequently isolated by Linopirdine subtraction. MEC greatly enhanced voltage dependent conductance and produced exceptional maximum sustained currents of 6.01 ± 0.26 pA/pF (EC50: 62.2 ± 8.99 μM). Combinations of RET/MEC, and MEC/DIC substantially amplified resting currents at low concentrations. MEC/DIC also greatly improved voltage dependent conductance. In current clamp experiments, a cholinergic challenge test (Oxotremorine-M, 10 μM; OXO), associated with our GWI rat model, produced powerful action potential (AP) bursts (85 APs). Optimized combinations of RET/MEC (5 and 0.5 μM) and MEC/DIC (0.5 and 2.5 μM) significantly reduced AP discharges to 3 and 7 Aps, respectively. Treatment of pain-like ambulatory behavior in our rat model with a RET/MEC combination (5 and 0.5 mg/kg) successfully rescued ambulation deficits, but could not be fully separated from the effect of RET alone. Further development of this approach is recommended.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call