Abstract

Arsenic trioxide (As2O3) has been introduced to the treatment of acute promyelocytic leukemia (APL), and has also been shown to induce apoptosis in a variety of solid tumor cell lines, including non-small cell lung cancer. However, the prohibitively high concentration required for the induction of apoptotic cell death in many solid tumor cells is unacceptable for clinical utilization due to the excessive toxicity associated with this dose. Sulindac is known to enhance the cellular responsiveness of tumors toward chemotherapeutic drugs. Herein, we demonstrated that combination treatment with As2O3 and sulindac resulted in a synergistic augmentation of cytotoxicity in H157 lung cancer cells, which was revealed by apoptotic induction as demonstrated by an increase in the sub-G0/G1 fraction. In addition, combination treatment with As2O3 and sulindac increased reactive oxygen species (ROS) and oxidative stress, as evidenced by the heme oxygenase-1 (HO-1) expression and mitogen-activated protein kinase (MAPK) phosphorylation. MAPK inhibitors blocked the induction of HO-1 by combination treatment. Inhibitors of p38 and JNK partially inhibited the augmented cell death whereas the ERK inhibitor showed poor inhibition. Combination treatment with As2O3 and sulindac induced oxidative DNA damage in a time-dependent fashion, which was evaluated by H2AX phosphorylation along with HO-1 induction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.