Abstract

Few studies have examined the correlation between pyruvate kinase M2 (PKM2) overexpression and triple-negative breast cancer (TNBC). TNBC is considered incurable with the currently available treatments, highlighting the need for alternative therapeutic targets. PKM2 expression was examined immunohistochemically in human breast tumor samples. Furthermore, we studied the effect of three PKM2 inhibitors (gliotoxin, shikonin, and compound 3K) in the MDA-MB-231 TNBC cell line. PKM2 overexpression correlates with TNBC. Interestingly, most TNBC tissues showed increased levels of PKM2 compared to those of receptor-positive breast cancer tissues. This suggests that PKM2 overexpression is an important factor in the development of TNBC. MDA-MB-231 TNBC cells are resistant to anticancer drugs, such as vincristine (VIC) compared to other cancer cells. We found that the recently developed PKM2 inhibitor gliotoxin sensitized MDA-MB-231 cells at a relatively low dose to the same extent as the known PKM2 inhibitor shikonin, suggesting that PKM2 inhibitors could be an effective treatment for TNBC. Detailed sensitization mechanisms were also analyzed. Both gliotoxin and shikonin highly increased late apoptosis in MDA-MB-231 cells, as revealed by annexin V staining. However, MDA-MB-231 cells with high cellular density inhibited the sensitizing effect of PKM2 inhibitors; therefore, we investigated ways to overcome this inhibitory effect. We found that gliotoxin+shikonin co-treatment highly increased toxicity in MDA-MB-231 cells with high density, whereas either VIC+gliotoxin or VIC+shikonin were not effective. Thus, combination therapy with various PKM2 inhibitors may be more effective than combination therapy with anticancer drugs. Gliotoxin+shikonin co-treatment did not increase S or G2 arrest in cells, suggesting that the co-treatment showed a high increase in apoptosis without S or G2 arrest. We confirmed that another recently developed PKM2 inhibitor compound 3K had similar mechanisms of sensitizing MDA-MB-231 cells, suggesting that PKM2 inhibitors have similar sensitization mechanisms in TNBC. PKM2 is a regulator of the oncogenic function of TNBC, and combination therapy with various PKM2 inhibitors may be effective for high-density TNBC. Targeting PKM2 in TNBC lays the foundation for the development of PKM2 inhibitors as promising anti-TNBC agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call