Abstract

Minimizing side effects, overcoming cancer drug resistance, and preventing metastasis of cancer cells are of growing interest in current cancer therapeutics. Phytochemicals are being researched in depth as they are protective to normal cells and have fewer side effects. Hesperetin is a citrus bioflavonoid known to inhibit TGFβ-induced epithelial-to-mesenchymal transition (EMT), migration, and invasion of prostate cancer cells. Targeting epigenetic modifications that cause cancer is another class of upcoming therapeutics, as these changes are reversible. Global H3K27me3 levels have been found to be reduced in invasive prostate adenocarcinomas. Combining a demethylase inhibitor and a known anti-cancer phytochemical is a unique approach to targeting cancer to attain the aforementioned objectives. In the current study, we used an H3K27 demethylase (JMJD3/KDM6B) inhibitor to study its effects on TGFβ-induced EMT in prostate cancer cells. We then gave a combined hesperetin and GSK-J4 treatment to the PC-3 and LNCaP cells. There was a dose-dependent increase in cytotoxicity and inhibition of TGFβ-induced migration and invasion of prostate cancer cells after GSK-J4 treatment. GSK-J4 not only induced trimethylation of H3K27 but also induced the trimethylation of H3K4. Surprisingly, there was a reduction in the H3K9me3 levels. GSK-J4 alone and a combination of hesperetin and GSK-J4 treatment effectively inhibit the important hallmarks of cancer, such as cell proliferation, migration, and invasion, by altering the epigenetic landscape of cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call