Abstract

Despite advances in technology, neither conventional anti-cancer drugs nor current nanoparticle (NP) drugs have gained substantial success in cancer treatment. While conventional chemotherapy drugs have several limitations such as low potency, poor invivo stability and limited bioavailability, non-specific targeting of NP drugs diminishes their potency at actual target sites. In addition, the development of drug resistance to anti-cancer drugs is another challenging problem. To overcome these limitations, we aimed to develop a polymer-drug conjugate, which functions as an active NP drug and drug carrier both, to deliver a chemotherapeutic drug for combination therapy. Accordingly, we made targeting NP carrier of lithocholic acid-poly(ethylene glycol)-lactobionic acid (LPL) loading doxorubicin (Dox) to produce Dox/LPL NPs. The cellular uptake of Dox/LPL NPs was relatively higher in human liver cancer cell line (SK-HEP-1) due to galactose ligand-asialoglycoprotein receptor interaction. Consequently, the cellular uptake of Dox/LPL NPs led to massive cell death of SK-HEP-1cells by two different mechanisms, particularly apoptotic activity by LPL and mitotic catastrophe by Dox. Most importantly, Dox/LPL NPs, when administered to orthotopic xenograft model of liver cancer, greatly reduced proliferation, invasion, migration, and angiogenesis of liver tumor invivo. Thus, this study exemplifies the superiority of combination therapy over individual NP drug or conventional small molecule drug for cancer therapy. Overall, we present a promising approach of combinatorial therapy to inhibit the hepatic tumor growth and metastasis in the orthotopic xenograft model mice, thus representing an effective weapon for cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.