Abstract
Low gene transfer rate is the most substantial hurdle in the practical application of gene therapy. One strategy to improve transfer efficiency is the use of a conditionally replicating adenovirus (CRAD) that can selectively replicate in tumor cells. We hypothesized that conventional E1-deleted adenoviruses (ad) can become replication-competent when cotransduced with a CRAD to selectively supply E1 in trans in tumors. The resulting selective production of large numbers of the E1-deleted ad within the tumor mass will increase the transduction efficiency. We used a CRAD (Delta24RGD) that produces a mutant E1 without the ability to bind retinoblastoma but retaining viral replication competence in cancer cells with a defective pRb/p16. Ad-lacZ, adenovirus-luciferase (ad-luc), and adenovirus insulin-like growth factor-1R/dominant-negative (ad-IGF-1R/dn; 482, 950) are E1-deleted replication-defective adenoviruses. The combination of CRAD and ad-lacZ increased the transduction efficiency of lacZ to 100% from 15% observed with ad-lacZ alone. Transfer of media of CRAD and ad-lacZ cotransduced cells induced the transfer of lacZ (media transferable bystander effect). Combination of CRAD and ad-IGF-1R/dn increased the production of truncated IGF-1R or soluble IGF-1R > 10 times compared with transduction with ad-IGF-1R/dn alone. Combined intratumoral injection of CRAD and ad-luc increased the luciferase expression about 70 times compared with ad-luc alone without substantial systemic spread. Combined intratumoral injection of CRAD and ad-IGF-1R/482 induced stronger growth suppression of established lung cancer xenografts than single injections. The combination of CRAD and E1-deleted ad induced tumor-specific replication of CRAD and E1-deleted ad and increased the transduction rate and therapeutic efficacy of these viruses in model tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.