Abstract

In this study, we hypothesized that systemic antitumor immunity might be enhanced by combining pulsed-wave ultrasound hyperthermia (pUSHT) with OK-432 and that the induced antitumor immunity could confer protection against tumorigenesis. These hypotheses were tested in bilateral and rechallenged tumor models. Bilateral and rechallenged tumor models were applied in the studies. In the bilateral tumor model, BALB/c mice were inoculated in both flanks with CT26-luc tumor cells. The tumors in the right flank were treated with 4 courses of pUSHT with or without OK-432. In the rechallenged tumor model, tumor cells were implanted into the right flank. Once formed, the tumors were treated with pUSHT with OK-432, followed by surgical resection. New tumor cells were then implanted into the contralateral flank. The antitumor response was evaluated via infiltrated immune cells and the severity of necrosis/apoptosis in tumors. In the bilateral tumor model, the tumor growth rate and growth activity of both treated (100% reduction) and untreated tumors (90.5% reduction) were significantly inhibited with the combination treatment compared with the sham control group, and the systemic antitumor effect was prolonged. The survival rate was significantly enhanced (sham control, 8 days; OK plus pUSHT, >20 days). IFNγ+ CD4 (treated tumor, 8.6-fold; untreated tumor, 4-fold), IFNγ+ CD8 (treated tumor, 6.7-fold; untreated tumor, 2.6-fold), and T cell and NK cell (treated tumor, 4-fold; untreated tumor, 2.5-fold) infiltration was increased in the combination group compared with the control group. In the rechallenged tumor model, new tumors failed to form with the combination treatment. This experimental study combining pUSHT and OK-432 explored a new therapeutic strategy for controlling colon cancer metastasis. The results show that the combination treatment may produce an effective antitumor immune response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.