Abstract

AbstractAdult T-cell leukemia (ATL) develops in a small proportion of individuals infected with human T-cell lymphotrophic virus-1. The leukemia consists of an overabundance of activated T cells, which express CD25 on their cell surfaces. Presently, there is no accepted curative therapy for ATL. Flavopiridol, an inhibitor of cyclin-dependent kinases, has potent antiproliferative effects and antitumor activity. We investigated the therapeutic efficacy of flavopiridol alone and in combination with humanized anti-Tac antibody (HAT), which recognizes CD25, in a murine model of human ATL. The ATL model was established by intraperitoneal injection of MET-1 leukemic cells into nonobese diabetic/severe combined immunodeficient mice. Either flavopiridol, given 2.5 mg/kg body weight daily for 5 days, or HAT, given 100 μg weekly for 4 weeks, inhibited tumor growth as monitored by serum levels of human β-2-microglobulin (β2μ; P < .01), and prolonged survival of the leukemia-bearing mice (P < .05) as compared with the control group. Combination of the 2 agents dramatically enhanced the antitumor effect, as shown by both β2μ levels and survival of the mice, when compared with those in the flavopiridol or HAT alone group (P < .01). The significantly improved therapeutic efficacy by combining flavopiridol with HAT provides support for a clinical trial in the treatment of ATL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call