Abstract

BackgroundAcute myeloid leukaemia (AML) remains difficult to treat despite the development of novel formulations and targeted therapies. Activating mutations in the FLT3 gene are common among patients and make the tumour susceptible to FLT3 inhibitors, but resistance to such inhibitors develops quickly.MethodsWe examined combination therapies aimed at FLT3+-AML, and studied the development of resistance using a newly developed protocol. Combinations of FLT3, CDK4/6 and PI3K inhibitors were tested for synergism.ResultsWe show that AML cells express CDK4 and that the CDK4/6 inhibitors palbociclib and abemaciclib inhibit cellular growth. PI3K inhibitors were also effective in inhibiting the growth of AML cell lines that express FLT3-ITD. Whereas resistance to quizartinib develops quickly, the combinations overcome such resistance.ConclusionsThis study suggests that a multi-targeted intervention involving a CDK4/6 inhibitor with a FLT3 inhibitor or a pan-PI3K inhibitor might be a valuable therapeutic strategy for AML to overcome drug resistance. Moreover, many patients cannot tolerate high doses of the drugs that were studied (quizartinib, palbociclib and PI3K inhibitors) for longer periods, and it is therefore of high significance that the drugs act synergistically and lower doses can be used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call