Abstract

The seismic responses of 3D steel buildings with perimeter moment resisting frames (PMRF), modeled as complex MDOF systems, are estimated and the accuracy of the commonly used rules to combine the individual effects of the seismic components, as well as the influence of the correlation of the components and the correlation of the individual effects on the accuracy of the rules, are studied. The responses are also estimated for several incidence angles of the horizontal components and the critical one is identified. It is observed that the rules underestimate the axial load but they reasonably overestimate the interstory and base shear. The effect of individual components may be highly correlated, not only for normal components, but also for totally uncorrelated components. Moreover, the rules are not always inaccurate in the estimation of the combined response for correlated components. On the other hand, totally uncorrelated components are not always related to an accurate estimation of the combined response. The critical response does not occur for principal components and the corresponding incidence angle of the seismic components varies from one earthquake to another. In the general case, the critical response can be estimated as 1.30 times that of the principal components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.