Abstract
This study aims to introduce as proof of concept a combination model for classification of prostate cancer using deep learning approaches. We utilized patients with prostate cancer who underwent surgical treatment representing the various conditions of disease progression. All possible combinations of significant variables from logistic regression and correlation analyses were determined from study data sets. The combination possibility and deep learning model was developed to predict these combinations that represented clinically meaningful patient's subgroups. The observed relative frequencies of different tumor stages and Gleason score Gls changes from biopsy to prostatectomy were available for each group. Deep learning models and seven machine learning approaches were compared for the classification performance of Gleason score changes and pT2 stage. Deep models achieved the highest F1 scores by pT2 tumors (0.849) and Gls change (0.574). Combination possibility and deep learning model is a useful decision-aided tool for prostate cancer and to group patients with prostate cancer into clinically meaningful groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.