Abstract
In this paper, dynamic response of a rotating shaft with geometrical nonlinearity under parametric and external excitations is investigated. Resonances, bifurcations, and stability of the response are analyzed. External excitation is due to shaft unbalance and parametric excitation is due to periodic axial force. For this purpose, combination resonances of parametric excitation and primary resonance of external force are assumed. Indeed, simultaneous effect of nonlinearity, parametric, and external excitations are investigated using analytical method. By applying the method of multiple scales, four ordinary nonlinear differential equations are obtained, which govern the slow evolution of amplitude and phase of forward and backward modes. Eigenvalues of Jacobian matrix are checked to find the stability of solutions. Both periodic and quasi-periodic motion were observed in the range of study. The influence of various parameters on the response of the system is studied. A main contribution is that the parametric excitation in the presence of nonlinearity can be used to suppress the forward synchronous vibration. Indeed, in the presence of combination parametric excitation, the energy is transferred from forward whirling mode to backward one. This property can be applied in control of rotor unbalance vibrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.