Abstract

While structural and chemical properties of adsorbents are largely known, energetic properties are mostly not known yet. In cation exchanged zeolites, the type, number, and position of cations have a major influence on energetic properties. Therefore, the energetic values of cations were investigated systematically on LTA zeolites. In these CaNaA materials, Na+-cations were selectively replaced by Ca2+-cations with calcium exchange rates between 8.7% and 92.1%. The cation sites were determined by crystal structure analysis of X-ray powder diffraction data (XRPD). Rietveld analysis showed the sequence of emptying Na+-cations from the various cation sites and the occupancy sequence of Ca2+-cations as a function of the exchange rate. In addition, sensor gas calorimetry was used to measure the heat of adsorption using methane as a sample molecule. The results show an increase in capacity and heat of adsorption up to an exchange rate of 68.6%. At higher exchange rates, the capacity and heat of adsorption decrease again. Characteristic plateaus of the heat of adsorption were found for all materials. By combining XRPD and calorimetry, the plateaus of the heat of adsorption were assigned to the different cation positions inside the zeolite cages and the respective energetic contributions were determined. Ca2+-cations represent energetically more valuable adsorption sites compared to Na+-cations. Furthermore, differences in the energetic values of the various cation sites were identified. It was also found, that the interactions with the zeolite framework provide the largest contribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.