Abstract

Hepatitis C virus (HCV) can cause chronic infection and evade the immune response. The generation and maintenance of an effective T-cell response is important for immune-mediated control of HCV infection. The purpose of this study was to obtain recombinant mosaic proteins containing the cytotoxic T lymphocyte (CTL) epitopes of HCV fused with different adjuvants and analyse their immunogenicity. A recombinant polyepitope protein comprising HLA-A2-restricted CTL epitopes of the NS3, NS4ab and NS5a proteins of HCV was designed. Adjuvant compounds, the T-helper (Th) epitope PADRE, lipopeptide from Neisseria meningiditis and interleukin 2 (IL-2) were included in the fusion proteins. Three proteins differing in their adjuvant content were expressed in Escherichia coli and purified. The purified proteins formed nanosized particles. The proteins were characterized by their ability to cause proliferation of spleen cells, induce expression of cytokine genes and production of interferon gamma by T lymphocytes of immunized mice. The obtained recombinant vaccine proteins effectively stimulate dendritic cells, which in turn specifically activate Th1 and Th2 lymphocytes. Adjuvant components act additively to enhance the stimulation of dendritic cells and polarize them in the direction of Th1 lymphocyte activation. Analysis of spleen cell proliferation, expression of Th1 and Th2 cytokines and production of interferon gamma by lymphocytes of immunized mice after specific stimulation in vitro revealed that recombinant protein comprising CTL epitopes of HCV, Th epitope PADRE, lipoprotein and IL-2 induced the highest response of T-lymphocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call