Abstract

Due to insufficient biomedical functions of hydrogels for wound management, the exploitation of available methods to expand the biomedical functions of hydrogels always becomes the cutting-edge research. Here, we report on the use of the silver-ethylene interaction and 3D printing technique to develop the antibacterial superporous polyacrylamide (PAM)/hydroxypropyl methylcellulose (HPMC) hydrogel dressings. Experiments demonstrated that the silver-ethylene interaction played significant roles in mediating the formation, dispersion, and cross-linking of silver nanoparticles (AgNPs) in the hydrogel matrix as well as the cross-linking of the PAM networks. At the same time, such organometallic complexes also controlled the release of AgNPs to balance the cytocompatibility and antibacterial activity of the AgNP-cross-linked hydrogels. On the other hand, the use of 3D printed templates and HPMC as the pore-making materials demonstrated could tailor hydrogels into 91.4% porosity and the formed pores into open channels, endowing hydrogels with rapid water uptake rate and 14 times dead-weight of uptake capacity. Furthermore, experiments showed that the regular large pores arisen from 3D printed templates could buffer the swelling of superporous hydrogel dressings, thus decreasing the detachment risk of dressings from wounds. In vivo experiments demonstrated that the AgNP-cross-linked superporous hydrogel dressings could promote the healing of the infected wounds and restrain scar tissue formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.