Abstract

During embryogenesis and further development, mammalian epigenome undergoes global remodeling, which leads to the emergence of multiple fate-restricted cell lines as well as to their further differentiation into different specialized cell types. There are multiple lines of evidence suggestingthat all these processes are mainly controlled by epigenetic mechanisms such as DNA methylation, histone covalent modifications, and the regulation of ATP-dependent remolding of chromatin structure. Based on the histone code hypothesis, distinct chromatin covalent modifications can lead to functionally distinct chromatin structures and thus distinctive gene expression that determine the fate of the cells. A large amount of recently accumulated data showed that small molecule biologically active compounds that involved in the regulation of chromatin structure and function in discriminative signaling environments can promote changes in cells fate. These data suggest that agents that involved in the regulation of chromatin modifying enzymes combined with factors that modulate specific cell signaling pathways could be effective tools for cell reprogramming. The goal of this review is to gather the most relevant and most recent literature that supports this proposition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call