Abstract

Radiolabeled peptides play a key role in nuclear medicine to selectively deliver radionuclides to malignancies for diagnosis (imaging) and therapy. Yet, their efficiency is often compromised by low metabolic stability. The use of 1,4-disubstituted 1,2,3-triazoles (1,4-Tzs) as stable amide bond bioisosteres can increase the half-life of peptides in vivo while maintaining their biological properties. Previously, the amide-to-triazole substitution strategy was used for the stabilization of the pansomatostatin radioligand [111In]In-AT2S, resulting in the mono-triazolo-peptidomimetic [111In]In-XG1, a radiotracer with moderately enhanced stability in vivo and retained ability to bind multiple somatostatin receptor (SSTR) subtypes. However, inclusion of additional 1,4-Tz led to a loss of affinity towards SST2R, the receptor overexpressed by most SSTR-positive cancers. To enhance further the stability of [111In]In-XG1, alternative modifications at the enzymatically labile position Thr10-Phe11 were employed. Three novel 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-peptide conjugates were synthesized with a 1,4-Tz (Asn5-Ψ[Tz]-Phe6) and either a β-amino acid (β-Phe11), reduced amide bond (Thr10-Ψ[NH]-Phe11), or N-methylated amino acid (N-Me-Phe11). Two of the new peptidomimetics were more stable in blood plasma in vitro than [111In]In-XG1. Yet none of them retained high affinity towards SST2R. We demonstrate for the first time the combination of the amide-to-triazole substitution strategy with alternative stabilization methods to improve the metabolic stability of tumor-targeting peptides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.