Abstract

In nature, the combination of composition, structure, and shape determines the matter's functional performance to a large extent. Inspired by which, two electrospun Janus nanofiber formulations were created using side-by-side electrospinning in this work. Tamoxifen citrate (TAM) was used as a model drug and ethyl cellulose (EC) and polyvinylpyrrolidone K60 (PVP) as the polymer carrier matrices. The fibers have linear cylindrical morphologies and distinct Janus structures by scanning electron microscopy. One side of the fibers took a round shape, while the other was crescent-shaped. The drug was present in both polymer matrices in the form of amorphous solid dispersions, owing to strong intermolecular interactions between drug and polymer. In vitro dissolution tests demonstrated that both sets of fibers could provide biphasic drug release due to the difference in solubility of PVP and EC. The different shape of TAM-EC and TAM-PVP side of the Janus structure resulted in a considerable variation in the drug release profiles. The Janus structure with crescent TAM-PVP side and round TAM-EC side gave a more rapid burst release in the first phase of release, and slower sustained release in the second phase. This work thus reports a new strategy for systematically developing advanced functional nanomaterials based on both shape- and structure-performance relationships.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.