Abstract
Despite a long history of related research, quantifying and verifying recharge is still a major challenge. The combination and comparison of conceptually different methods has been recommended as a strategy for evaluating recharge estimates. In this article, recharge estimates from water-table fluctuation (WTF) methods are combined with and compared to the results of the spatially and temporally discretized soil-water-balance model PROMET (processes of radiation, mass and energy transfer). As PROMET and WTF methods rely on different measurable variables, a comparison of these two contrasting techniques allows improved assessment of the plausibility of recharge estimates. An enhanced approach to WTF methods is presented. The approach assumes that in the case of no recharge, there exists a maximum possible potential decline for any given groundwater level. The primary conclusion is that WTF methods are excellent for determining the plausibility of spatially distributed regional-groundwater-recharge estimation approaches and for detecting inconsistencies in available models. Recharge estimates derived from WTF approaches alone are, however, not suitable for regional-scale recharge estimation due to (1) their strong dependency on local data, applicability of which is limited to only very specific conditions, and (2) their sensitivity to influences other than recharge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.