Abstract

BackgroundThe context and purpose of the study: The spready dissemination of resistance mechanisms among extended spectrum beta-lactamases (ESBL) producing bacterial isolates has increasingly been reported. There is an urgent need to explore the antibacterial property of nontoxic biosafe compounds. This In-vitro experimental study aimed to evaluate the effect of silver nanoparticles (AgNPs) alone and in combination with ineffective antibiotics against ESBL producing isolates.ResultsCiprofloxacin with AgNPs combination had the highest synergistic percentage against 91.43% of ESBL Escherichia coli isolates, and it was additive against 8.57% of them. As regards ESBL K. pneumoniae isolates, AgNPs with cefotaxime were synergistic against 75.00% of them, followed by ceftazidime and ciprofloxacin (62.50%). The least effective combination was ampicillin with AgNPs. The greatest enhancement of activity of the antibiotics was observed at silver minimum inhibitory concentration (MICAg) MICAg/2 and MICAg/4. At lower AgNPs concentrations, enhanced effects were less obvious. AgNPs inhibited the production of beta-lactamase enzymes in 91.43% of E. coli and 75% of Klebsiella pneumoniae isolates.ConclusionAgNPs are a valuable alternative to combat drug resistance, as they had synergistic effects when combined with different ineffective antibiotics against ESBL producing bacteria. AgNPs had lowered MIC values of antibiotics by several folds. Moreover, they inhibited the production of beta-lactamase enzymes.

Highlights

  • The context and purpose of the study: The spready dissemination of resistance mechanisms among extended spectrum beta-lactamases (ESBL) producing bacterial isolates has increasingly been reported

  • 1 Background Extended-spectrum beta-lactamases ESBL bacteria are often acquired through transferable plasmids which carry genetic information that code for resistance determinants to different antibiotic classes

  • Hydrodynamic diameter, size distribution and zeta potential of silver nanoparticles were characterized by Malvern Zetasizer Nano ZS, as average diameter was recorded as 75 nm with narrow particles size distribution and zeta potential was recorded as − 11.0 Mv as shown in Figs. 2 and 3

Read more

Summary

Introduction

The context and purpose of the study: The spready dissemination of resistance mechanisms among extended spectrum beta-lactamases (ESBL) producing bacterial isolates has increasingly been reported. There is an urgent need to explore the antibacterial property of nontoxic biosafe compounds. This In-vitro experimental study aimed to evaluate the effect of silver nanoparticles (AgNPs) alone and in combination with ineffective antibiotics against ESBL producing isolates. Widespread dissemination of infections caused by multi-drug resistance ESBL (MDR-ESBL) bacteria is a major public health problem due to limited curative options [1]. These infections require the administration of high doses of antibiotics which may lead to intolerable toxic and adverse effects.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call