Abstract

Understanding the conformational changes induced by small ligands noncovalently bound to proteins is a central problem in biophysics. We focus on the binding location of the water-soluble porphyrin, meso-tetrakis (p-sulfonatophenyl) porphyrin, to a globular protein, β-lactoglobulin, which has been observed to partially unfold when irradiated by laser light. Identifying the binding location is necessary to determine the mechanism of action as well as the atoms and residues involved in the photoinduced partial unfolding. Such atomic details are typically investigated by nuclear magnetic resonance or X-ray crystallography. However, for biomolecules in solution at the low concentrations (μM) required to deliver uniform laser irradiation, these traditional techniques do not currently provide sufficient information, and one must rely upon less direct spectroscopic methods. We describe a method that uses resonance Raman spectroscopy and density functional theory (DFT) to select the most likely binding configuration among a set of solutions yielded by computational docking algorithms. This methodology may be generalized to use with other ligand-protein complexes where the ligand structure is amenable to DFT simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.