Abstract

The aim of this study was to improve reinforcement learning algorithm by combining artificial bee colony algorithm. The traditional method of reinforcement learning algorithm has a very low convergence rate due to random choices. An ant algorithm will help to make random choices in reinforcement learning more appropriate. This hybrid algorithm called the bee colony reinforcement (BCR) algorithm. The tip of the arm must reach a predetermined purpose by BCR algorithm. The results show that the BCR algorithm in the model has been able to reduce the time to reach the goal than the reinforcement learning algorithm (In average 12 steps faster). Also, the path for reaching the goal in the BCR algorithm was far more direct and shorter than the reinforcement learning algorithm. This method also detects the optimal path towards the goal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.