Abstract

Purpose: This study aimed to detect changes in iron deposition and neural microstructure in the substantia nigra (SN), red nucleus (RN), and basal ganglia of Parkinson's disease (PD) patients at different stages using quantitative susceptibility mapping and diffusion kurtosis imaging to identify potential indicators of early-stage PD. Methods: We enrolled 20 early-stage and 15 late-stage PD patients, as well as 20 age- and sex-matched controls. All participants underwent quantitative susceptibility mapping and diffusion kurtosis imaging to determine magnetic susceptibility (MS), fractional anisotropy (FA), mean diffusivity (MD), and mean kurtosis (MK) in several brain regions. Results: Compared with the control group, MS and MK values in the SN were significantly increased in the early- and late-stage PD group, whereas MS values in the red nucleus (RN), globus pallidus (GP), and caudate nucleus (CN), FA value in the CN and GP, and MK value in the CN and putamen (PU) were significantly increased in the late-stage PD group. There were positive correlations between MS and MK values in the CN and MS and FA values in the GP. Furthermore, the combination of MS and MK values in the SN provided high accuracy for distinguishing early-stage PD patients from controls. Conclusions: This study identified MS and MK in the SN as potential indicators of early-stage PD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call