Abstract

Fischer-Tropsch (F-T) process is an important synthesis route to acquire clean liquid fuels through modern coal chemical industry, which converts syngas (CO and H2) into hydrocarbon, and also generates oxygenates discharged as the F-T waste-water. These oxygen-containing compounds in F-T waste-water have the similar molecular weight and some are even isomers of each other. Hence, it is necessary to develop rapid and efficient analysis tools to obtain identification and quantitative information of the F-T waste-water. The pure shift NMR techniques provided only chemical shift information in one-dimension 1H NMR spectra, without homonuclear JH-H coupling. In this work, we tested and compared three pure shift NMR techniques (including Zangger-Sterk, PSYCHE and TSE-PSYCHE methods) in the analysis of two F-T waste-water model mixtures, genuine waste-water and two alcohol isomer mixtures. The results show that JH-H coupling multiplicities are collapsed into singlets corresponding to individual chemically distinct protons of the compound. For some severely overlapped signals in the pure shift NMR spectra, the chemical shift selective filters with TOCSY (CSSF-TOCSY) experiments were conducted to assist the signal assignment. Thus, pure shift NMR approaches can identify most signals of components, and CSSF-TOCSY can extract the signal of a specific compound. The combination of these two NMR techniques offers a powerful tool to analyze the F-T waste-water or other complex mixtures including isomer mixtures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call