Abstract

This study presents a combined method of the probability approach and support vector machine (SVM) to predict failure degradation based on simulated and experimental failure bearing data. The failure rate as a degradation parameter is calculated using the Cox-proportional hazard model and the reliability theory based on simulated and experimental data. Kurtosis is used to show the bearing condition under specified operating conditions up to final failure occurrence. For simulated data, a failure degradation is calculated using the Cox model, where the baseline hazard is assumed having Weibull probability. In the case of experimental data, a reliability formula is employed to estimate the failure degradation of the bearing based on run-to-failure datasets. Both failure degradations are regarded as target vectors which indicate the bearing health to failure condition. Moreover, an SVM is employed as an artificial intelligence prognostics method and trained by kurtosis and the target vector to build the prediction model. The trained SVM is then utilized to predict the final failure time of individual bearing data. The result shows that the proposed method has the potential to be a machine health prognostics framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.