Abstract

Wastewater aeration is an important unit operation that provides dissolved oxygen for microorganisms in wastewater treatment. In this study, the impact of peracetic acid (PAA) dosing on wastewater aeration was assessed in terms of oxygen transfer, visual observation of bubble size changes, and evolution of dissolved oxygen from PAA (and H2O2) decomposition. Oxygen transfer coefficients improved with PAA concentrations of up to 7 mg/L, which was probably due to the smaller bubbles being formed from the aeration diffuser and evolution of small bubbles from PAA (and H2O2) decomposition. At a PAA concentration higher than 7 mg/L, the accumulation of acetate molecules to the gas-liquid interface of bubbles likely began to counteract the positive impact of bubble size decrease by increasing the mass transfer resistance of oxygen from bubbles to water. Finally, a continuous bench-scale primary effluent aeration experiment demonstrated that at a continuous PAA dosing of 1 mg/L, the air input by a compressor could be decreased by 54%, while keeping the oxygen level constant at approximately 1.5 mg/L. PAA dosing could be combined, for example, with aerated grit removal to enhance the primary effluent aeration together with additional benefits of partial disinfection and odor formation prevention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.