Abstract
To investigate the inhibitory effect of the combined use of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and oridonin on choroidal melanoma cell lines, and to explore its underlying mechanism. MUM-2B and C918 cells were treated with different concentrations of TRAIL and oridonin, and MTT assay used to evaluate the inhibition rate of the two compounds on cells. Then, the cell cycle distribution and apoptosis were detected by flow cytometry, and changes in apoptosis-related proteins such as death receptor 5 (DR5), a-caspase-3, and x-linked inhibitor of apoptosis protein (XIAP) were detected by Western blot. MUM-2B cells were transfected with si-DR5, which interfered with the expression of the DR5 gene. MTT and Western blot assay were used to detect cell activity and apoptosis-related proteins. When TRAIL and oridonin were simultaneously administered to the MUM-2B cells, the apoptosis rate was significantly higher than that by the two drugs individually. However, the effect of combined use of TRAIL and oridonin on C918 cells was not significantly different from that used alone. Cell cycle analysis showed that TRAIL and oridonin could induce G2/M arrest in MUM-2B cells. The Western blot results showed that the protein expression levels of the DR5, a-caspase-3, and BAX increased, while the expression levels of the anti-apoptosis-related proteins XIAP and BCL-2 were suppressed when TRAIL and oridonin simultaneously administered to MUM-2B cells. Interfering the expression of DR5 gene in MUM-2B cells could reverse the inhibitory effect of oridonin and TRAIL on the proliferation and apoptosis induction of MUM-2B cells. The inhibitory effects of oridonin and TRAIL on MUM-2B cells are significantly enhanced when they were administered as a combined treatment, which may ascribe to up-regulation of DR5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.