Abstract

Gastrointestinal mechanisms involved in the suppression of appetite are compromised in obesity. Glucagon-like peptide-1 (GLP-1) is released in response to nutrients, suppresses food intake, and has been shown to play a role in regulation of energy balance. It is not known whether obese-prone (OP) rats exhibit dysfunctional GLP-1 signaling that could contribute to decreased nutrient-induced satiation and hyperphagia. Therefore, we examined the effects of exogenous intraperitoneal administration of the GLP-1R agonist, exendin-4 (Ex-4), on food intake in OP and obese-resistant (OR) rats during chow or high-energy/high-fat (HE/HF) feeding. All doses of Ex-4 effectively suppressed intake in OP and OR rats fed chow; however, during HE/HF-feeding, OP rats suppressed intake significantly less than OR rats at all Ex-4 doses tested. This was associated with downregulation of GLP-1R mRNA expression in the vagal nodose ganglia of OP rats. Furthermore, HE/HF-fed OP rats had significantly lower plasma GLP-1 levels, decreased protein levels of GLP-1 in the intestinal epithelium, and reduced number of L cells in the distal ileum. These results demonstrate that HE/HF-feeding, coupled with OP phenotype, results in reduced endogenous GLP-1 and GLP-1R activation, indicating that impaired GLP-1 signaling during obesity may exacerbate hyperphagia and weight gain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.