Abstract
Kacang goats are small ruminants produced by low-income households in smallholder and farm to reduce poverty and prevent undernutrition. Studies to find a cryopreservation protocol for Kacang goat semen are expected to multiplication of genetically superior animals selected by the paternal lineage. This study evaluated the effect of thawing temperature and supplementation of the green tea extract nanoparticle in skim milk-egg yolk (SM-EY) extender on post-thaw sperm quality of Kacang goat semen. Six ejaculates of Kacang goat were diluted in SM-EY supplemented or not (control group) with 0.001 mg/mL NPs GTE. The diluted semen was packaged with 0.25 mL straws (insemination dose: 60x106 sptz/mL) and cryopreserved. Then, six samples of the control group and NPs GTE groups were thawed at 37°C or 39°C sterile water for 30 s and submitted to sperm quality evaluations. The sperm viability, motility, and intact of the plasma membrane (IPM) were higher (p<0.05) in NPs GTE group than control group. In contrast, the NPs GTE group presented lower (p<0.05) malondialdehyde levels and sperm DNA fragmentation (SDF) compared with the control group. The catalase levels were not significantly different (p > 0.05) between the control and NPs GTE groups. Thawing at 39°C resulted in higher (p<0.05) sperm viability, motility, and IPM than thawing at 37°C. However, thawing at 39°C group presented lower (p<0.05) malondialdehyde levels compared with thawing at 37°C. SDF and catalase levels were similar (p>0.05) between thawing at 37°C and thawing at 37°C. In conclusion, supplementation of 0.001 mg/mL of NPs GTE in SM-EY extender and thawing temperature of 39°C resulted in a better quality of frozen-thawed Kacang goat semen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.