Abstract

Recent studies have demonstrated that the octapeptide repeats of the N-terminal region of prion protein may be responsible for de novo generation of infectious prions in the absence of template. Here we demonstrate that PrP-(23-98), an N-terminal portion of PrP, is converted to aggregates upon incubation with NADPH and copper ions. Other pyridine nucleotides possessing a phosphate group on the adenine-linked ribose moiety (the reduced form of nicotinamide adenine dinucleotide 3'-phosphate, nicotinic acid adenine dinucleotide phosphate, and NADP) were also effective in promoting aggregation, but NADH and NAD had no effect. The aggregation was attenuated by the metal chelator EDTA or by modification of histidyl residues with diethyl pyrocarbonate. The aggregates are amyloid-like as judged by the binding of thioflavin T, a fluorescent probe for amyloid, but do not exhibit fibrillar structures according to electron micrography. Interestingly the aggregates were resistant to proteinase K digestion. Likewise NADPH and zinc ions caused aggregation of PrP-(23-98), but the resulting aggregates were susceptible to degradation by proteinase K. Upon incubation with NADPH and copper ions, the full-length molecule PrP-(23-231) also formed proteinase K-resistant amyloid-like aggregates. Because it is possible that PrP, NADPH, and copper ions could associate in certain tissues, the aggregation observed in this study may be involved in prion initiation especially in the nonfamilial types of prion diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.