Abstract

With the depletion of petrochemical energy and the greenhouse effect issues caused by petrochemical energy. It is imperative to develop a kind of fuel cell has the advantages of environmental-friendly, energy saving, and low waste emission, which has great potential in future. Therefore, it’s necessary to develop a composite material with low-cost, environmental-friendly, and good stability to replace the Pt-based electrocatalyst. In this research, we prepared the Mn,Ni-doped carbon nanotubes (Mn,Ni/NCNTs) by one-step in-situ method. The transition metal (Mn, Ni) nanoparticles were coated on the acidified-carbon nanotubes to prepare the precursor. After calcined at a certain temperature, the Mn,Ni/NCNTs composite was obtained successfully. The catalytic performance of the catalysts prepared by different transition metals and different calcination temperatures were systematically studied. The results showed the produced composites had layered tubular structure, large surface area, and possessed excellent stability and methanol resistance. This kind of composite is a promising catalyst in the future practical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call