Abstract

Listeria monocytogenes can grow at the low temperature commonly used in the storage and transportation of food, and the number of cases of food poisoning caused by L. monocytogenes has increased recently in the US and Europe. Several methods of detecting L. monocytogenes cells have been proposed; however, all existing methods require approximately 48 h incubation. In this study, we attempted rapid detection of L. monocytogenes using flow cytometry (FCM). The method is based on measuring the number of L. monocytogenes cells by using a combination of FCM and immunomagnetic separation (IMS). First, polyclonal antibodies (anti- L. monocytogenes rabbit IgG-FITC) conjugated with fluorescein isothiocyanate (FITC) were reacted with L. monocytogenes cells, and then FCM was applied. The cell numbers were determined by FCM using a traditional colony-counting method in the range of 10 4–10 8 cells ml −1. Tetrameric antibody complexes (TAC) were used because they can recognize both magnetic and FITC molecules on the FITC-conjugated antibodies. FITC-labeled L. monocytogenes cells were reacted with a secondary antibody (TAC) bound to magnetic beads. Then, IMS was used. The method is suitable for detection in the range of 10 2–10 8 cells ml −1. The FCM assay enumerated the cells within 1 min and the total assay time, including sample preparation, was less than 2 h.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call