Abstract
We evaluated the frequency of translocation renal cell carcinoma (RCC) by reverse transcription polymerase chain reaction (RT-PCR) and how well the TFE3 immunoreactivity is concordant with TFE3 gene translocation status proved by fluorescence in situ hybridization (FISH) assay and RT-PCR. TFE3 and Cathepsin K expression was analyzed by immunohistochemistry in 185 RCC cases, and 48 cases either of more than weak expression of TFE3 or of positivity for Cathepsin K were done for FISH analysis and RT-PCR. All the RT-PCR positive cases were confirmed by cloning and sequencing. Of the 14 cases with strong nuclear TFE3 expression, 12 showed a break-apart signal by FISH. ASPL- and PRCC-TFE3 translocations were detected in 13 and one case, respectively, by RT-PCR. Of 21 cases with weak TFE3 expression, five were translocation-positive by FISH. ASPL-, PRCC-, and PSF-TFE3 translocations were detected by RT-PCR (n=3, 3, and 1, respectively). All 13 TFE3-negative/cathepsin K-positive cases were negative by FISH and two each harbored ASPL- and PRCC-TFE3 translocations that were detected by RT-PCR. A high rate of TFE3 immunoreactivity (8.6%) was confirmed by RT-PCR (13.5%) and FISH (9.7%). Higher translocation rate of RT-PCR means RT-PCR detected translocation in TFE3 weak expression group and only cathepsin K positive group more specifically than FISH. Thus, RT-PCR would complement FISH analysis for detecting translocation RCC with fusion partners.
Highlights
Xp11 translocation renal cell carcinoma (RCC) is characterized by chromosome translocations involving the TFE3 gene at the Xp11 breakpoint [1, 2]
To compare three methods for diagnosing Xp11 translocation RCC, the present study examined the results of TFE3 immunohistochemistry, fluorescence in situ hybridization (FISH), and reverse transcription polymerase chain reaction (RT-PCR) using formalin fixed paraffin embedded (FFPE) tissue
An initial diagnosis is usually made based on immunohistochemical detection of TFE3 or TFEB overexpression in the nucleus [13, 20]
Summary
Xp11 translocation renal cell carcinoma (RCC) is characterized by chromosome translocations involving the TFE3 gene at the Xp11 breakpoint [1, 2]. Fusion partners of TFE3 include PRCC, PSF (SFPQ1), NonO, ASPL (ASPSCR1), CLTC and DVL2 [4, 5] and some studies have indicated that translocation RCCs with different translocations show different morphologic features [6, 7]. Therapies targeting vascular endothelial growth factor receptor and mammalian target of rapamycin may benefit patients with Xp11 translocation RCC [8, 9]; the MET signaling pathway is another possible target, since it is activated by ASPL-TFE3 fusion [10]. Differentiating Xp11 translocation RCC from other subtypes is of clinical importance and more than of academic interest
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.